Skip to Main Content


After completing this chapter, you will be able to:


  • Explain how the material constituents and structural organization of bone affect its ability to withstand mechanical loads.
  • Describe the processes involved in the normal growth and maturation of bone.
  • Describe the effects of exercise and of weightlessness on bone mineralization.
  • Explain the significance of osteoporosis and discuss current theories on its prevention.
  • Explain the relationship between different forms of mechanical loading and common bone injuries.


What determines when a bone stops growing? How are stress fractures caused? Why does space travel cause reduced bone mineral density in astronauts? What is osteoporosis and how can it be prevented?


The word bone typically conjures up a mental image of a dead bone—a dry, brittle chunk of mineral that a dog would enjoy chewing. Given this picture, it is difficult to realize that living bone is an extremely dynamic tissue that is continually modeled and remodeled by the forces acting on it. Bone fulfills two important mechanical functions for human beings: (a) It provides a rigid skeletal framework that supports and protects other body tissues, and (b) it forms a system of rigid levers that can be moved by forces from the attaching muscles (see Chapter 12). This chapter discusses the biomechanical aspects of bone composition and structure, bone growth and development, bone response to stress, osteoporosis, and common bone injuries.


The material constituents and structural organization of bone influence the ways in which bone responds to mechanical loading. The composition and structure of bone yield a material that is strong for its relatively light weight.


Material Constituents


The major building blocks of bone are calcium carbonate, calcium phosphate, collagen, and water. The relative percentages of these materials vary with the age and health of the bone. Calcium carbonate and calcium phosphate generally constitute approximately 60–70% of dry bone weight. These minerals give bone its stiffness and are the primary determiners of its compressive strength. Other minerals, including magnesium, sodium, and fluoride, also have vital structural and metabolic roles in bone growth and development (62). Collagen is a protein that provides bone with flexibility and contributes to its tensile strength.


The water content of bone makes up approximately 25–30% of total bone weight. The water present in bone tissue is an important contributor to bone strength. For this reason, scientists and engineers studying the material properties of different types of bone tissue must ensure that the bone specimens they are testing do not become dehydrated. The flow of water through bones also carries nutrients to and waste products away from the living bone cells within the mineralized matrix. In addition, water transports mineral ions to and from bone for storage and subsequent use by the body tissues when needed (18).


Structural Organization


The relative percentage ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessPhysiotherapy Full Site: One-Year Subscription

Connect to the full suite of AccessPhysiotherapy content and resources including interactive NPTE review, more than 500 videos, Anatomy & Physiology Revealed, 20+ leading textbooks, and more.

$595 USD
Buy Now

Pay Per View: Timed Access to all of AccessPhysiotherapy

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.