++
Objectives
By studying this chapter, you should be able to do the following:
Discuss the function of the cell membrane, nucleus, and mitochondria.
Define the following terms: (1) endergonic reactions, (2) exergonic reactions, (3) coupled reactions, and (4) bioenergetics.
Describe the role of enzymes as catalysts in cellular chemical reactions.
List and discuss the nutrients that are used as fuels during exercise.
Describe the structure and function of ATP in the cell.
Discuss the biochemical pathways involved in anaerobic ATP production.
Describe the aerobic production of ATP.
Describe how the metabolic pathways involved in bioenergetics are regulated.
Discuss the interaction between aerobic and anaerobic ATP production during exercise.
Identify the enzymes that are considered rate limiting in glycolysis and the citric acid cycle.
++
Outline
Cell Structure
Biological Energy Transformation
Fuels for Exercise
Carbohydrates
Fats
Proteins
High-Energy Phosphates
Bioenergetics
Anaerobic ATP Production
Aerobic ATP Production
Aerobic ATP Tally
Efficiency of Oxidative Phosphorylation
Control of Bioenergetics
Interaction Between Aerobic/Anaerobic ATP Production
++
Key Terms
acetyl-CoA
activation energy
adenosine diphosphate (ADP)
adenosine triphosphate (ATP)
aerobic
anaerobic
ATPase
ATP-PC system
beta oxidation
bioenergetics
cell membrane
chemiosmotic hypothesis
citric acid cycle (also called the Krebs cycle)
coupled reactions
cytoplasm
electron transport chain
endergonic reactions
enzymes
exergonic reactions
flavin adenine dinucleotide (FAD)
glucose
glycogen
glycogenolysis
glycolysis
inorganic
inorganic phosphate (Pi)
isocitrate dehydrogenase
Krebs cycle (also called citric acid cycle)
lactate
metabolism
mitochondrion
molecular biology
nicotinamide adenine dinucleotide (NAD+)
nucleus
organic
oxidation
oxidative phosphorylation
phosphocreatine (PC)
phosphofructokinase (PFK)
reduction
++
Thousands of chemical reactions occur throughout the body during each minute of the day. Collectively, these reactions are called metabolism. Metabolism is broadly defined as the total of all cellular reactions and includes chemical pathways that result in the synthesis of molecules (anabolic reactions), as well as the breakdown of molecules (catabolic reactions).
++
Because energy is required by all cells, it is not surprising that cells possess chemical pathways that are capable of converting foodstuffs (i.e., fats, proteins, carbohydrates) into a biologically usable form of energy. This metabolic process is termed bioenergetics. For you to run, jump, or swim, skeletal muscle cells must be able to continuously extract energy from food nutrients. Indeed, in order to continue to contract, muscle cells must have a continuous source of energy. Given the importance of cellular energy production during exercise, it is essential that students of exercise physiology develop a thorough understanding of bioenergetics. Therefore, this chapter will introduce both general and specific concepts associated with bioenergetics.
++
Cells were discovered in the seventeenth century by the English scientist Robert Hooke. Advancements in the microscope over the past 300 years have led to improvements in our understanding of cell structure ...