Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!

CASE STUDY

CASE STUDY

A 10-year-old girl (height 126 cm, 3rd percentile; weight 36 kg, approximately 65th percentile) presents with short stature. Review of her growth chart demonstrates normal birth weight and length and growth velocity until a markedly decreased growth velocity over the past 2 years, resulting in a decrease in height percentile from the 50th to the 3rd. Review of history reveals headaches, increased urination and drinking, and dizziness with febrile illnesses. Physical examination demonstrates short stature, mild generalized obesity, a bitemporal visual field defect, and no breast development. The patient is diagnosed with a suprasellar craniopharyngioma. After complete surgical resection, laboratory evaluations demonstrate growth hormone (GH) deficiency and a delayed bone age of 18 months. The patient is treated with recombinant human GH at a dose of 40 mcg/kg per day subcutaneously. After 1 year of treatment, her height velocity has increased from 4 cm/year to 10 cm/year. How does GH stimulate growth in children? What other hormone deficiencies are suggested by the patient’s history and physical examination? What other hormone replacements will this patient likely require?

The control of metabolism, growth, and reproduction is mediated by a combination of neural and endocrine systems located in the hypothalamus and pituitary gland. The pituitary weighs about 0.6 g and rests at the base of the brain in the bony sella turcica near the optic chiasm and the cavernous sinuses. The pituitary consists of an anterior lobe (adenohypophysis) and a posterior lobe (neurohypophysis) (Figure 37–1). It is connected to the overlying hypothalamus by a stalk of neurosecretory fibers and blood vessels, including a portal venous system that drains the hypothalamus and perfuses the anterior pituitary. The portal venous system carries small regulatory hormones (Figure 37–1, Table 37–1) from the hypothalamus to the anterior pituitary.

FIGURE 37–1

The hypothalamic-pituitary endocrine system. Hormones released from the anterior pituitary stimulate the production of hormones by a peripheral endocrine gland, the liver, or other tissues, or act directly on target tissues. Prolactin and the hormones released from the posterior pituitary (vasopressin and oxytocin) act directly on target tissues. Hypothalamic factors regulate the release of anterior pituitary hormones. ACTH, adrenocorticotropin; ADH, antidiuretic hormone [vasopressin]; CRH, corticotropin-releasing hormone; DA, dopamine; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone-releasing hormone; GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; PRL, prolactin; SST, somatostatin; TRH, thyrotropin-releasing hormone; TSH, thyroid-stimulating hormone.

TABLE 37–1Links between hypothalamic, anterior pituitary, and target organ hormone or mediator.1

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.