TY - CHAP
M1 - Book, Section
TI - Equations
A1 - Hall, Susan J.
PY - 2023
T2 - Basic Biomechanics, 9e
AB - Table Graphic Jump Location|Download (.pdf)|PrintForceF = maWeightwt = magPressureP = F/ADensityρ = m/VTorqueT = Fd⊥ImpulseJ = FtDisplacementd = Δ positionVelocityv = d/tAccelerationa = Δv/Δta = (v2 – v1)/(t2 – t1)Equations of constant accelerationv2 = v1 + atd = v1t + ½ at2v22 = v12 + 2adAngular displacementθ = Δ angular positionAngular velocityω = θ/ΔtAngular accelerationα = Δω/Δtα = (ω2 – ω1)/(t2 – t1)Curvilinear distances = rΦLinear—angular velocityv = rωTangential accelerationat = rαat = (v2 – v1)/tRadial accelerationar = v2/rFrictionF = μRStatic frictionFm = μsRKinetic frictionFk = μkRLinear momentumM = mvImpulse—momentumFt = ΔMCoefficient of restitution–e = (v1 – v2)/(u1 – u2)WorkW = FdPowerP = W/ΔtP = FvKinetic energy½ mv2Potential energyPE = maghPE = (weight)(height)Strain energySE = ½ kx2Conservation of mechanical energy(PE + KE) = CPrinciple of work and energyW = ΔKE + ΔPE + ΔTEEquations of static equilibriumΣFv = 0ΣFh = 0ΣT = 0Equations of dynamic equilibriumΣFx – max = 0ΣFy − may = 0ΣTG − Iα = 0Segmental method for CGXcg = Σ(xs) (ms)/ΣmsYcg = Σ(ys) (ms)/ΣmsMoment of inertiaI = mk2Moment of inertia (local term)Hl = IsωsMoment of inertia (remote term)Hr = mr2ωgAngular momentumH = IωH = mk2ωSegment angular momentumH = Isωs + mr2ωgAngular impulseTt = ΔHTt = (Iω)2 – (Iω)1Newton’s second law (angular)T = IαCentripetal forceFc = mv2/rFc = mrω2Buoyant forceFb = VdγDragFD = ½CDρApv2LiftFL = ½CLρApv2
SN -
PB - McGraw-Hill Education
CY - New York, NY
Y2 - 2024/10/16
UR - accessphysiotherapy.mhmedical.com/content.aspx?aid=1199270376
ER -